Quiz 11

April 9, 2020

Chemical Engineering Thermodynamics

Vacuum distillation of ethanol from an ethanol (1)/water (2) mixture can lead to a lower energy load and a higher concentration of ethanol compared to distillation at atmospheric pressure. Data for the equilibrium concentrations of vapor and liquid ethanol at 190 mmHg are given in the attached excel sheet. [Beebe A.H.; Coulter K.E.; Lindsay R.A.; Baker E.M. Equilibria in Ethanol-Water System at Pressures Less Than Atmospheric. Ind.Eng.Chem. Ind.Ed. 34 15011504 (1942).]
a) Use this data to obtain the one-parameter Margules coefficient by adding to the table columns for $P_{\text {sat, }, 1}, P_{\text {sat }, 2}, \gamma_{1}, \gamma_{2}$, calculated $y_{\text {calc, } 1}$ for the bubble point, and the calculated P values, the calculated $\left(P_{\text {calc }}-P\right)^{2}$, and a cell containing the sum of the $\left(P_{\text {calc }}-P\right)^{2}$ values.
b) Using solver find the minimum of the sum of $\left(P_{\text {calc }}-P\right)^{2}$ by varying the Margules coefficient, A_{12} (P is 190 mmHg). (This is the least-squares method.)
After solving for A_{12} make a plot of $y_{\text {calc, } 1}$ and y_{1} versus x_{1}. Why do $y_{1 \text { calc }}$ and y_{1} disagree?
c) Use the Margules coefficient to calculate the dew pressure, $P_{\text {dew }}$, for $T=50.5^{\circ} \mathrm{C}$; $y_{1}=0.6925$.
d) Does an azeotrope exist at $T=50.5^{\circ} \mathrm{C}$ for this system (use the Margulis model)?

At the azeotrope $x_{1}=y_{1}$, and $x_{2}=y_{2}$.
Using expressions for y_{1} in terms of x_{1}, for y_{2} in terms of x_{2}, and $x_{1}+x_{2}=1$, solve for $x_{1, \text { azeotrope }}$ at the azeotrope for $T=50.5^{\circ} \mathrm{C}$.
Use this value of $x_{1, \text { azeotrope }}$ to calculate $P_{\text {azeotrope }}$ at the azeotrope.
Calculate $y_{1, \text { azeotrope }}$ at the azeotrope.
Is this a maximum boiling or a minimum boiling temperature azeotrope (remember P vs x_{1} and T vs x_{1} plots are different)?
e) Make a scatter plot of T versus x_{1} and T versus y_{1} on the same chart with the x / y range 0 to 1 and the T range from 45 to $65^{\circ} \mathrm{C}$. On the same plot add your T versus $y_{\text {calc, }, \text {. Does }}$ this plot support your prediction of an Azeotrope?

\boldsymbol{A}_{12}	3.49
$\boldsymbol{P}_{\text {dew }}$	77.2 mmHg
$\boldsymbol{x}_{1, \text { azeotrope }}$	0.422
$\boldsymbol{P}_{\text {azeotrope }}$	173 mmHg
$\boldsymbol{y}_{1, \text { azeotrope }}$	0.422
Max or Min?	Minimum Boiling Temperature

$$
\begin{aligned}
& \ln \gamma_{1}=A_{12} x_{2}^{2} \\
& \ln \gamma_{2}=A_{12} x_{1}^{2}
\end{aligned}
$$

$\boldsymbol{\Theta}_{\text {madifed }}$ Raoults law.

$$
y_{i} P=x_{i} \gamma_{i} P_{i}^{s a t} \quad \text { or } \quad K_{i}=\frac{\gamma_{i}^{L} P_{i}^{s a t}}{P}
$$

Bubble P

Bubble T

(Choose one flow sheet.)

Dew P

Dew T

(Choose one flow sheet.)

ANSWERS
a)

b)

$y_{\text {lcalc }}$ and y_{1} disagree because this is optimized for pressure not y. If we had used $\left(y-y_{\text {calc }}\right)^{2}$ for the least squares optimization this plot would look better but P would be wrong.
c)

dew pressure for $T=50.5^{\circ} \mathrm{C} ; y_{1}=0.6925$.						Antoine Equation Constants			P mmHg	T, ${ }^{\circ} \mathrm{C}$
						A	B	C	tMin[oC]	tMax[oC]
P, mmHg		A12	3.49384568		Ethanol (1)	8.02	1940	258	20	93
190					Water (2)	8.07	1730	233	1	100
Psat1 mmHg	Psat2 mmHg									
53.8898895	92.8340358									
		g1	g2	P mmHg						
x1	x2	1	1	60						
0.77101661	0.242368	1.22781523	7.98028889	91.9030001						
0.961854	0.04651951	1.00758956	25.3398228	77.6144356						
0.98985442	0.01237266	1.00053499	30.6708023	77.211712						
0.99166135	0.01016909	1.00036137	31.0568899	77.2064271						
0.99176557	0.01004198	1.00035239	31.0793294	77.2061988						
0.99177154	0.0100347	1.00035188	31.0806152	77.206186						
0.99177188	0.01003429	1.00035185	31.0806888	77.2061853						
0.9917719	0.01003426	1.00035184	31.080693	77.2061852						
0.99177191	0.01003426	1.00035184	31.0806932	77.2061852						

d) $x_{1}=y_{1} P /\left(P^{\text {sat }}{ }_{1} \gamma_{1}\right)$ and $x_{1}=y_{1}$ at the azeotrope so, $\mathrm{P}=P^{\mathrm{sat}}{ }_{1} \gamma_{1}=P^{\mathrm{sat}}{ }_{2} \gamma_{2}$
$\gamma_{1}=\exp \left(x_{2}^{2} A_{12}\right)$ $P^{\text {sat }} / P^{\text {sat }}{ }_{2}=\gamma_{2} / \gamma_{1}=\exp \left(\left(x_{2}^{2}-x_{1}{ }^{2}\right) A_{12}\right)=\exp \left(\left(1-2 x_{1}^{2}\right) A_{12}\right)$
Solve for x_{1}; calculate P; calculate y_{1}

Azeotrope at $50.5{ }^{\circ} \mathrm{C}$				Antoine Equation Constants			P mmHg	T, ${ }^{\circ} \mathrm{C}$
				A	B	C	tMin[OC]	tMax[oC]
P, mmHg	A12	3.49384568	Ethanol (1)	8.02	1940	258	20	93
190			Water (2)	8.07	1730	233	1	100
	yi $=$ xi Psati gi/P	Psat1 mmHg	Psat 2 mmHg at $50.5^{\circ} \mathrm{C}$					
		53.8898895	92.8340358					
	$\mathrm{gi}=\mathrm{f}(\mathrm{xi})$							
	Psati $=f(T)$		g1 3.21093472					
	$P=190 \mathrm{mmHg}$		g2 1.86393833					
	x1,azeo =	0.42216736	g1 Psat1 g2 Psat2					
	$\mathrm{P}=$	173.036917	$173.036917 \quad 173.036917$					
		Minimum B	iling Azeotrope					
	y 1 ,azeo =							

e)

