Quiz 11 April 9, 2020 Chemical Engineering Thermodynamics

Vacuum distillation of ethanol from an ethanol (1)/water (2) mixture can lead to a lower energy load and a higher concentration of ethanol compared to distillation at atmospheric pressure. Data for the equilibrium concentrations of vapor and liquid ethanol at 190 mmHg are given in the attached excel sheet. [Beebe A.H.; Coulter K.E.; Lindsay R.A.; Baker E.M. *Equilibria in Ethanol-Water System at Pressures Less Than Atmospheric*. Ind.Eng.Chem. Ind.Ed. **34** 1501-1504 (1942).]

- a) Use this data to obtain the one-parameter Margules coefficient by adding to the table columns for $P_{\text{sat},1}$, $P_{\text{sat},2}$, γ_1 , γ_2 , calculated $y_{\text{calc},1}$ for the bubble point, and the calculated P values, the calculated $(P_{\text{calc}}-P)^2$, and a cell containing the sum of the $(P_{\text{calc}}-P)^2$ values.
- b) Using solver find the minimum of the sum of (P_{calc}-P)² by varying the Margules coefficient, A₁₂ (P is 190mmHg). (This is the least-squares method.)
 After solving for A₁₂ make a plot of y_{calc,1} and y₁ versus x₁. Why do y_{1calc} and y₁ disagree?
- c) Use the Margules coefficient to calculate the dew pressure, P_{dew} , for $T = 50.5^{\circ}\text{C}$; $y_1 = 0.6925$.
- d) Does an azeotrope exist at T = 50.5°C for this system (use the Margulis model)? At the azeotrope x1 = y1, and x2 = y2. Using expressions for y1 in terms of x1, for y2 in terms of x2, and x1 + x2 = 1, solve for x1,azeotrope at the azeotrope for T = 50.5°C. Use this value of x1,azeotrope to calculate Pazeotrope at the azeotrope. Calculate y1,azeotrope at the azeotrope. Is this a maximum boiling or a minimum boiling temperature azeotrope (remember P vs
- x1 and T vs x1 plots are different)?
 e) Make a scatter plot of T versus x1 and T versus y1 on the same chart with the x/y range 0 to 1 and the T range from 45 to 65 °C. On the same plot add your T versus ycalc,1. Does this plot support your prediction of an Azeotrope?

A 12	3.49
P _{dew}	77.2 mmHg
X 1,azeotrope	0.422
P _{azeotrope}	173 mmHg
y 1,azeotrope	0.422
Max or Min?	Minimum Boiling Temperature

$$\ln \gamma_1 = A_{12} x_2^2$$
$$\ln \gamma_2 = A_{12} x_1^2$$

$$y_i P = x_i \gamma_i P_i^{sat} \quad \text{or} \quad \left[K_i = \frac{\gamma_i^L P_i^{sat}}{P} \right]$$
 11.18

Bubble P

Modified Raoult's law.

1. Know
$$x_i$$
, T. Calc γ_i , P_i^{sat} .
2. $P = x_1 \gamma_1 P_1^{sat} + x_2 \gamma_2 P_2^{sat}$
3. $y_i = \frac{x_i \gamma_i P_i^{sat}}{P} = x_i K_i$

Bubble T

(Choose one flow sheet.)

ANSWERS

a)

)										
					Adjustable Para	meters					
		P, mmHg		A12	3.493845679						В
		190									
Τ											
Ι	т, °С	x1 ethanol	y1 ethanol	Psat1, mmHg	Psat2, mmHg	γ1	γ2	Pcalc	y1,calc	(Pcalc-190)^2	
Ι	62	0.016	0.146	90.6775965	160.5436825	29.457161	1.0008948	200.85402	0.2127798	117.809674	
Ι	60	0.037	0.275	83.056011	146.4074377	25.535871	1.0047945	220.13993	0.3564714	908.415147	
Ι	57.2	0.065	0.365	73.3124385	128.4085888	21.20861	1.014871	222.91304	0.4533856	1083.26831	
Ι	55.3	0.09	0.4125	67.27472	117.3022326	18.051948	1.0287044	219.10866	0.4988373	847.314206	
	52.2	0.158	0.5015	58.3405262	100.9441944	11.905623	1.0911371	202.4849	0.5419846	155.872713	
Ι											
Ι	53	0.209	0.5455	60.5421553	104.9660733	8.8998361	1.164876	209.32991	0.5379661	373.645317	
Ι	52.4	0.2385	0.565	58.8843655	101.9370745	7.5838356	1.2198621	201.19868	0.5293613	125.410529	
T	50.1	0.3535	0.6045	52.8862861	91.00916482	4.3072326	1.5474351	171.57211	0.4693363	339.586992	
I	49.8	0.4705	0.6545	52.1441963	89.66078687	2.6633118	2.1671945	168.22968	0.3884052	473.947015	
Ι	48.9	0.497	0.654	49.9715374	85.71799644	2.4205007	2.3702877	162.31289	0.3703662	766.576335	
Ι											
T	50.5	0.5805	0.6925	53.8898895	92.83403579	1.8493752	3.2457842	184.25758	0.3139852	32.9754149	
T	48.5	0.6525	0.726	49.0312633	84.01400483	1.5248617	4.4261345	178.00515	0.2740637	143.876348	
T	49.8	0.7	0.755	52.1441963	89.66078687	1.3695005	5.5399439	199.00277	0.2511927	81.0499368	
T	48.7	0.72	0.7685	49.4994743	84.86232869	1.3151063	6.1178431	192.23873	0.2438109	5.01189531	
1	50.2	0.7895	0.8152	53.1356641	91.46247258	1.1674398	8.8264229	218.90861	0.2237226	835.707707	
1											
1	49.1	0.8416	0.8502	50.4474787	86.58106023	1.0916197	11.877643	209.24168	0.2214973	370.242362	
T	49	0.8735	0.879	50.2090216	86.14860056	1.0575019	14.379623	203.0857	0.2283739	171.235439	
1	49.8	0.897	0.899	52.1441963	89.66078687	1.0377617	16.629524	202.11426	0.2401591	146.75522	
T	49.5	0.9485	0.9466	51.4111017	88.32958596	1.0093096	23.178987	154.658	0.3182338	1249.05699	
T	47.5	0.96	0.958	46.7470813	79.88073785	1.0056058	25.026323	125.09362	0.36076	4212.83871	
T											
1	50.3	0.9719	0.97	53.3860551	91.91771581	1.0027626	27.119427	122.07568	0.4262048	4613.71283	
Ī	48.6	0.9812	0.9798	49.2648889	84.43725202	1.0012356	28.896253	94.268938	0.5134081	9164.43623	
T		Q=====							Sum P		
				y vs		mean					
		1		,		square					
		0.9			difference =						
		0.9			minimum	26218.7453					
†		0.8									1

 $y_{1 \text{ calc}}$ and y_1 disagree because this is optimized for pressure not y. If we had used $(y-y_{\text{ calc}})^2$ for the least squares optimization this plot would look better but *P* would be wrong.

;)											
dew pres	sure for $T = 50.5^{\circ}$	$C; y_1 = 0.6925$	5.				Antoine Equ	ation Constan	ts	P mmHg	T,°C
							Α	В	С	tMin[oC]	tMax[oC]
	P, mmHg		A12	3.49384568		Ethanol (1)	8.02	1940	258	20	9
	190					Water (2)	8.07	1730	233	1	10
	Psat1 mmHg	Psat2 mmHg									
	53.8898895	92.8340358									
			g1	g2	P mmHg						
	x1	x2	1	1	60						
	0.77101661	0.242368	1.22781523	7.98028889	91.9030001						
	0.961854	0.04651951	1.00758956	25.3398228	77.6144356						
	0.98985442	0.01237266	1.00053499	30.6708023	77.211712						
	0.99166135	0.01016909	1.00036137	31.0568899	77.2064271						
	0.99176557	0.01004198	1.00035239	31.0793294	77.2061988						
	0.99177154	0.0100347	1.00035188	31.0806152	77.206186						
	0.99177188	0.01003429	1.00035185	31.0806888	77.2061853						
	0.9917719	0.01003426	1.00035184	31.080693	77.2061852						
	0.99177191	0.01003426	1.00035184	31.0806932	77.2061852						

d) $x_1 = y_1 P/(P^{\text{sat}}_1 \gamma_1)$ and $x_1 = y_1$ at the azeotrope so,

 $P = P^{\text{sat}_{1}} \gamma_{1} = P^{\text{sat}_{2}} \gamma_{2}$ $\gamma_{1} = \exp(x_{2}^{2}A_{12})$ $P^{\text{sat}_{1}}/P^{\text{sat}_{2}} = \gamma_{2}/\gamma_{1} = \exp((x_{2}^{2}-x_{1}^{2})A_{12}) = \exp((1-2x_{1}^{2})A_{12})$ Solve for x_{1} ; calculate P; calculate y_{1}

Azeotrope at 50.5°C						Antoine Equ	ation Constan	ts	P mmHg	T,°C		
							Α	В	С	tMin[oC]	tMax[oC]	
	P, mmHg		A12	3.49384568		Ethanol (1)	8.02	1940	258	20	93	
190	190					Water (2)	8.07	1730	233	1	100	
	yi = xi Psati g		gi/P	Psat1 mmHg	Psat2 mmHg	at 50.5°C						
				53.8898895	92.8340358							
		gi = f(xi)										
		Psati = f(T)			g1	3.21093472						
		P= 190 mmHg			g2	1.86393833						
			x1,azeo =	0.42216736	g1 Psat1	g2 Psat2						
			P =	173.036917	173.036917	173.036917						
				Minimum Bo	oiling Azeotro	pe						
	y1,azeo		y1,azeo =	0.42216736								
		1	1									

e)